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ABSTRACT

We prove first that if G is a finite solvable group of derived length d > 2,
then k(G) > |G|1i(2d‘1), where k(G) is the number of conjugacy classes in G.
Next, a growth assumption on the sequence [G()) :G(H’l)];’_l, where GO is
the ith derived group, leads to a |G|1/(24-1) lower bound for k(G), from which
we derive a |G|¢/ 10821982 IGl Jower bound, independent of d(G). Finally, “al-
most logarithmic” lower bounds are found for solvable groups with a nilpotent
maximal subgroup, and for all Frobenius groups, solvable or not.

1. Introduction

In 1903 E. Landau [12] showed that the number k(G) of conjugacy classes in a
finite group G cannot remain bounded as |G| — oo . Using Landau’s method,
P. Erdés and P. Turén [6] gave the best general lower bound presently known:
k(G) > log, log, |G|. But there is growing evidence that this bound is far from
best possible. For example, the author proved in [1] that given € > 0, for almost
all integers n < z, as £ — oo, k(G) > |G|~ for each group G of order n. The
recent work of A. V. Lépez and J. V. Lépez {13], [14] expands the classification
of the finite groups with a given number k of conjugacy classes to all k < 12, and
shows that k(G) > log, |G| when |G| < 3'3. No group G has been discovered with
k(G) < log; |G|, while k(G) = [log; |G|] for either G = PSL(3,4) or G = M3; (a
Mathieu group), and 14 of the 26 sporadic simple groups satisfy k(G) < log, |G|.

On the other hand we know that if G is a nilpotent group then k(G) >
log, |G} (see e.g. [3] or [18]). Furthermore, Kovécs and Leedham-Green [11]
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have discovered, for each odd prime p, a group G, of order p? with fewer than
(log, |Gpl)® classes. We note that these p-groups G, contain far fewer classes
relative to their orders than do the Alternating groups A, for n sufficiently large.
Cartwright proved in {3] that if G is supersolvable then k(G) > 3/5 log, |G|, and
has shown more recently [4] that there exists a constant a > 0 such that for
every solvable group G we have k(G) > a(log, |G|)®, where b = .003459.. ..

Sherman proved [18] that if G is nilpotent of nilpotence class ¢ then k(G) >
¢(|G|Y/¢ —1)+1, and Cartwright [3] showed that if G is solvable of Fitting length
f then k(G) > (log, |G|)*//.

In Theorem 1 we prove that if G is a solvable group of derived length d > 2
then k(G) > |G|*/2*~. This extends the author’s result in [2] for d = 2, where
it also shown that the exponent 1/3 is best possible. There are many interesting
situations which give rise to small derived lengths (e.g. < 3) while |G| — oo,
assuming further knowledge of either the structure of solvable G or the prime
factorization of |G|, and these yield |G|? lower bounds on k(G) via Theorem 1.

In Theorem 2 we show that certain growth assumptions on the sequence
{[G® : GE+1]}4-1 jead to a |G|'/(24-1) Jower bound on k(G), which in turn
leads to a |G|¢/1°8219821G| Jower bound independent of d(G), using a deep result
of P. M. Neumann and M. R. Vaughan-Lee. When G is solvable and contains
a nilpotent maximal subgroup we find in Theorem 3 that k(G) > (log, IG1)°,
where b > .414.... Finally, we prove in Theorem 4 that for all Frobenius groups,

solvable or not,

1 log, |G|
H6) > 3 ogy oz, IGT

2.

G is called a Frobenius group if G contains a proper subgroup H such that
H N H? = {1} for every ¢ € G — H. Frobenius proved [8, p. 495] that G —
U,eq H? U {1} forms a proper normal subgroup N (the kernel). The studies of
A. V. Lépez and J. V. Lépez [13], [14] show that for k < 12 either the largest or
second largest solvable group containing exactly k classes is a Frobenius group.
Frobenius groups are extremal also in the sense of Lemma 1. For a different
proof, without the characterization of equality, see [3, Lemma 2.1].

LEMMA 1: K N <G, then

k(N) -1

K(G) 2 KGIN) + T



Vol. 75, 1991 NUMBER OF CONJUGACY CLASSES 245

When N is proper, equality occurs if and only if G is a Frobenius group with
kernel N.

Proof: Since N 9 G, k(G) = kg(N)+ kg(G — N) where kg(S) is the number of
G-conjugacy classes in the normal subset S. Clearly kg(G — N) > k(G/N) -1,
since whenever ¢1,92 € G — N and g1, ge are G-conjugates then Ng; and Ng;
are G/N-conjugates. Also, if n € N then |Cg(n)N| = [Cg(n) : Cn(n)]IN|
that is [G : Cg(n)N]|[n]y| = |[n]cl, where [n]x is the N-class of n and Cn(n) =
NNCg(n). It follows that each G-class [n]g C N splits into exactly [G : Cg(n)N]
N-classes. Summing over the distinct [n]g C N — {1} we obtain
E(N)-1=kn(N - {1}) = Z|G : C(n)N} < Z[G : N} =[G : N](kg(N) - 1),
s0

kE(N)-1

[G: N]

this together with k(G — N) > k(G/N) — 1 gives the desired inequality. It is
well known that if G is a Frobenius group with kernel N then equality occurs in
the statement of Lemma 1 [5, p. 68]. Suppose equality occurs and 1 # N # G.
From the proof we see that {G : Cg(n)N] = [G : N}, i.e., that Cg(n) C N for
each n € N — {1}. But this is a necessary and sufficient condition that G be a
Frobenius group with kernel N [10, p. 99]. o

ka(N) 2 +1;

THEOREM 1: Suppose G is a solvable group of derived length d > 2. Then
k(@) > |G}/,

Proof: More generally, we prove that (G() denotes the ith derived group) if
|G®| < |G|'— for somei:1<i<dand a:0<a<1,then k(G) > |G|*/?' -1,
Since k(G) > [G : G'], the statement certainly follows when i = 1 and « > 0.
Assume, for a proof by induction, that for some ¢ : 1 < ¢ < d — 1, whenever
0<pB <1and|[G:GW] > |G, then k(G) > IGlﬁ/zi‘l. Now suppose that
[G : GUtD] > |G|* for some a : 0 < a < 1. Then either (a) or (b) must hold,
where:

2t-1_ Y,

(a‘) [G . G(f)] > 'Gl(z'ﬂ_l) ,
(35)-
(b) (GO : gH)) » |G\ T ),

If (a) is true, then the induction hypothesis with

20 -1
= (i)
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yields k(G) > |G|#/2'~! = |G|*/?'*' =1, so the conclusion holds for i + 1. Other-
wise (b) is true and (a) is false. From Lemma 1 and ¥(G®) > [G() : GU+D)] we
have .
EG®) -1  [GY: GG+Y)

[G:GO] ~  [G:G0]
which is now > |G|*/2*" =1, In each case we find that [G : G(+D] > |G[* implies
k(@) > |G|/ -1 and the induction is complete. o

k(G) 2 KG/GY) +

Remarks: P. M. Neumann and M. R. Vaughan-Lee showed (in [16]) that there
exist positive constants a < 8 and b < 8/3 such that, if G is any finite solvable
group, then d(G) < a + blog, log, |G|. Our Theorem 1 shows that whenever
solvable G has d(G) < log, log, |G| — log, log, log, |G| then k(G) > log, |G].
There are many interesting situations where the derived length of solvable G is
known to be small (e.g. < 3), assuming a little more knowledge about G, or |G|.
These in turn lead to |G|? lower bounds for k(G), by Theorem 1. For example,
if G is solvable of cube-free order then d(G) < 3 (see [19]). If G has an abelian
maximal subgroup then G is solvable and d(G) < 3 ([17], p. 392). If G = AB
where A and B are abelian subgroups of G then G is solvable and d(G) < 2
({17], p. 384). Finally, if G is a solvable, doubly transitive permutation group
then it follows from the work of Huppert [9] that d(G) < 5.

LEMMA 2: If G is a solvable group and N < G then k(G) > k(G/N) + d(N),
where d(N) is the derived length of N. In particular, k(G) > [G : G']+d(G)-1.

Proof: The inequality in the lemma is certainly true when N is abelian. Let
d=d(N),and N > NO > ... > N@ = {1} the derived series for N. Then
each N is characteristic in N and normal in G, and N®)/N(+1) is abelian.
Therefore for each i < d — 1 we have k(G/N+1) > k(G/N®) + 1. Thus

E(G) > K(G/NUD) 411> k(G/N@D) 42> ... > k(G/N) + d(N).

A sequence of real numbers {a;}} “decreases on the average” if

1
Art1 5;(a1+a2+---+a,) foreachr:1<r<n-1.

Note that this condition is equivalent to

1
r+1

1
(a1 +az+---+ar1) < (a1 +az + - +ar).
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Clearly, non-increasing sequences are decreasing on the average, but it is easy
to construct others. An interesting inequality, generalizing a classical inequality
of Chebycheff, states that if the sequences {a;}} and {b;}} both decrease on the
average (or both increase on the average), then

nia;bg > Zn:a,-ib,'.
=1

i=1 i=1

See e.g. [15]. A proof by induction is tricky, but not difficult. This inequality is
used to prove the following result.

THEOREM 2: Suppose G is a solvable group of derived length d > 3, and that
{[G®) : GE+1]}41 decreases on the average. Then

(a) k(G) > |G|"/(24-1) and

(b) k(G) > |G|/ 1982198216 where ¢ is a positive constant.

Proof: In Lemma 1 replace G by G and N by GG+1), Then

. ) . k(G(‘+1)) -1
) W . gty KGT) -1
HG™) 267 6N+ e gy

SO

k(GW) -1 S [GW : G+ —1  k(GH+D) -1
[G:GD] = [G: G [G: GG+D)]

foreachi:1<:<d-2.

We may now use the latter inequality to repeatedly replace (k(G#¥)-1)/[G : G}
by its lower bound. Thus,

kK(G") -1

LG -1 kG" -1
[¢":G"] -1 kG")

HE) 2[G: G+ >[6: 6+

[G : Gl] [G . GI] [G . G”]
e GGG -1G"]) | KGY) -1
=[G: G+ G + GG > >
d-1
(1) kKG)>[G: G+ l_éi Z[G(i) : GEDY(IGD] — |GEHY)).

Since {[G() : GU+D]} decreases on the average, so does {[G() : GU+D)] — 1},
and the sequence {|G?| - |G|} must decrease since |G(+1)| properly divides
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|G®|. From the generalized Chebycheff inequality we have (after rewriting the
telescoping sum)

d-1 d-1
(%) Z[G(i) . G(i+1)](|G(i)| _ lG(i+1)D > (d—iT E[G(:‘) . G(i+1)]> (IG'| - 1).

i=1 =1

Since the arithmetic-geometric inequality gives (after rewriting the telescoping
product):

&

-1
(G : GG+ > |G| V/(4-D),
1

1
d—1¢

we obtain from (1) and (*) that

Q) > G_GI I_IG'I—I Gll/(d—l)
@3216:¢1+ L jgpren,

From the latter (or Lemma 1 or 2), part (a) of the Theorem follows when
[G . Gl] > IGII/(2d_l)'
On the other hand,
[G . GI] < IG,ll/(u_l) iff |Gl|1/(d—l) > |G|2/(2d—1).

The latter, together with the last inequality on k(@) and the arithmetic-geometric
inequality, again yield part (a) of the Theorem. As remarked earlier, P. M. Neu-
mann and M. R. Vaughan-Lee showed (Theorem 10.2 in [16]) that there exist
positive constants @ < 8, b < 8/3 such that if G is any finite solvable group

then d(G) < a + blog, log, |G|. Part (b) of the theorem follows from the latter
inequality and part (a). o

From Lemma 1 it follows that if G is solvable of derived length d, and
‘G(d—l){ > IGx(1+a)/2

for some a : 0 < a < 1, then k(G) > |G|®. Inequality (1) in the proof of Theorem
2 gives us a little more from the same lower bound on max; <j<4—2[G') : GUHD].
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COROLLARY: For a solvable group G, suppose

max [G(J’) . G(.H'l)] > |G|(1+°‘)/2.
1<j<d-2 -

Then k(G) > [G : G'] + |G|*. In particular, if

max [G(j) : G(Hl)] > (|G| log, |G|)1/2

1<j<d-2

then k(G) > [G : G'] + log, |G|

Proof: Whenever z > 2y > 4 we have z — y > z/y, so j < d — 2 implies
|GD| = |GUHD| > [GV) : gU+Y),

and now by hypothesis at least one term in Y- 1[G : GGE+D)(|GW| - |GH+Y))
is at least |G|'*“. The first conclusion now follows from inequality (1) in the
proof of Theorem 2. In particular when

o = 1082108, |G
log, |G|

the second conclusion is obtained. o

Suppose the solvable group G contains a nilpotent maximal subgroup M, and
the Fitting subgroup F(G) £ M. Then G = FM and hence G has Fitting length
2. It follows from Theorem 4 of [3] that k(G) > (log, |G|)}/2. The general case
is considered in Theorem 3 below, but we first need the following Lemma.

LEMMA 3: Let N be a proper normal subgroup of G, and 0 < a,8,a,b < 1.
(i) Fk(N) > |N|* and k¥(G/N) > [G : N)? then

k(G) > IGlaﬂ/(l+a+ﬂ).

(ii) If k(N) > a|N|® and k(G/N) > blog,[G : N] then

ab

k(G)>1+a

(log, |G| - log; log; |G]).

Proof: (i) If |N| > |G|(1+8)/(1+etB)  then |N|1+e > |G|i+eB/(1+a+f) By
Lemma 1
‘N‘a -1 |N|a+1

k(G) > k(G/N) + G N] > G > |G|op/(tath)
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Otherwise |N| < [G|A+A)/(1+a+8) e [G: N] > |G|*/0++#) and by Lemma
1,
k(G) > K(G/N) > [G : N|? > |G|*8/(+a+h),

The proof of (ii) is similar, according to whether

b
14+a
NP+ > = |Gllog, |G,
or

« b
NI+ < (G log, G,

In the former case Lemma 1 gives
kE(N) a|N|* ab
> .
HO> M2 N Tra8lCl

In the latter case Lemma 1 gives

k(G) > k(G/N) >

b
1+ a

(alog, |G| — log, log, |G]).

THEOREM 3: Let G be a solvable group with a nilpotent maximal subgroup.
Then

(2) k(G) > ¥(log, |G])®, where b (> .414) satisfies b~! =1 + log,(8/3).

(b) If |G| =1 p{" (pi distinct primes) and s = Max a; then

2log, IG|

HG) > 51

Proof: Let M be a nilpotent maximal subgroup of G and Mg the core of M. In
order to prove (a) we will need k(G/Mg) > 3/4log, |G : Mg, and for (b) we need
k(G/®) > 1/4log,[G : ®], where ®(G) is the Frattini subgroup of G. These two
inequalities are derived as follows: Since G is solvable, if L/Mg is a chief factor
of G then L/Mg is abelian and L 4 G, but L f, M. AlsoL' < Mg<LOM
soLNM QL Mand Mg <LNM 4G =LM. Thus Mg =LNM
so M/Mg = G/L = G/M¢g/L/Mg, and G/Mg is abelian by nilpotent. By
Theorem 1 of [3], k(G/Mg) > 3/4log,|G : Mg]. Since Mg is nilpotent and
normal in G, Mg < F(G), the Fitting subgroup of G. Also ®(G) < Mg, Mg/®
is abelian and G/® /Mg /® = G/Mg. In Lemma 3(ii) replace G by G/®, N by
Mg/® and set a =a =1, b=3/4. Then

k(G/®) > 3(log,[G : ®] - log, log, (G : &)).

The latter is > 1/4log,[G : ] when [G : 8] > 219, so k(G/®) > 1/4log,[G : B].
But all groups of order t < 2!° have > 1/4log, t conjugacy classes [13}, so in all
cases k(G/®) > }log,[G : ®].

R



Vol. 75, 1991 NUMBER OF CONJUGACY CLASSES 251

Proof of (a): For 0 < j < d(Mg) define G; = G/M(Gj) and the abelian N; =
Mg_l)/Mg) for j > 1. Then G;/N; = Gj-; and we prove by induction that
k(G;) > () log, |Gjl, j > 0. For j = 0 we have

K(Go) = KG/Mg) > 3 log, G : Mo,

as proved in the paragraph above. Thus k(G,) > 2log; |G,|. When j > 1, N;
is abelian and we apply Lemma 3(ii) to k(G;), with N replaced by N; and
a=a=1 Forj=1set b=23/4, and for j > 2 set b = (3/8)/. Then

k(G1) > 3/8(log, |G1| — log; logs |G ),
and for j > 2
K(Gy) > (3 3 {log; |G| ~ log; logs |G;).
Since we may assume that |G| > 27 (otherwise (3/8)%log, |G1] < 1 < k(G,)),
we know that log, |G1| > 8/51log, log, |G1] so
log, |G1| — log, log, |Gy | > 3/8log, |G|

and the case j = 1 follows. For j > 2 we may assume that |G| > 2%, in which
case log, |G;| > 4log, log, |G;| and

k(G;) > (3Y(3)(}1og, |G)]) = (3 log, |G,].

In particular, when j = d(Mg) we find that k(G) > (3/8)#Mc)+1]og, |G|.

Set b~ = 1+log,(8/3). As usual, we have 2¢(Ma)~1 < ¢, where c is the nilpo-
tence class of the nilpotent group M. And now we obtain, using Lemma 6.1(i) of
[3], that k(G) > ¢ > 2¢(Me)=1_ Tf we assume that d(Mg) > blog, log, |G|, then
k(G) > 1/2(log, |G|)® as desired. On the other hand, suppose that d(Mg) <
blog, log, |G|. From the definition of b we have

blogg /3 log, |G|

blog, log, |G| = Tog 2
8

= (1 - b)logg 3 log, |G|
The inequality in (a) now follows in this case also from

k(G) > (3/8) M)+ 1og, |G.
Proof of (b): Here we actually prove that

(*) k(G) > s——=logy |G| - log2 log, |G].

1
2(s+1)
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Since always k(G) > log, log, |G| [6], (b) is immediate if

2log, |G
log; log, |G| 2 gill | .

On the other hand (b) follows from (*) when

2log, |G| 1G]

log, log, |G| < = 5 e sl

To prove (*), note that when s < 2 we have each Sylow subgroup of G abelian,
as well as M an abelian maximal subgroup of G. As mentioned in the Remarks,
either leads to d(G) < 3 and hence k(G) > |G|'/?, by Theorem 1. Since s > 1
we need only show that |G|'/7 > llog, |G|; the details are left to the reader.
So assume that s > 3. By a result of Hill and Parker [7] the nilpotence class
c(®(G)) < i(s — 1), and by Sherman’s theorem [18] k(®) > |®[*/(*~1. Recall
now that k(G/®) > 1log,[G : @], proved in the first paragraph. In Lemma 3(ii)
replace N by ®, o by 2/(s — 1), and set a = 1 and b = 1/4. We obtain the
inequality

KE) > 57y loea 161 - (257 logs ogs 1),

and from this () follows. o

LEMMA 4: Let N be a nilpotent normal subgroup of the solvable group G, with
kE(G/N) > [G : N)A. Then

kKG) > 7= 2 log, |G|/ log, log, |G|

(ﬂ)

Proof: Let {N) : j > 0} denote the derived series of N, N(® = N, and
G; := G/NU). I N; := NU-D/NG are the abelian factor groups of {N(J)}
then G;—1 = G;/N;, for j > 1. Hence k(G,) = k(G/N) > [G : N}? = |Go‘ﬂ,
k(G]/N]) = k(Go) 2 [Gl . N]]ﬂ, and k(Nl) = INll By Lemma 3(1), k(G]) Z
lGllﬂl, where 8, = ﬂ/(2+ ﬂ) Now k(Gz/Nz) > [Gz : .Ng]ﬂl and k(Nz) = IN2|,
s0 k(G7) > |G2|P? where B, = $1/(2+ $1) = B/(4+3p). Continuing in this way
we see that k(G;) > |G;|# where

1
(1+4+1/8)2" -1

In particular, when i = d(N), G; = G, and k(G) > |G|", where

Bi = for each ¢ : 1 < i < d(N).

¥ =(1+1/8)2"" - 1.
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Since the nilpotence class ¢ = cl(N) always satisfies d(N) < log, cl(N) + 1 we
have y7! < 2(1 + 1/B8)e(N) — 1. By [3, Lemma 6.1(i)] we know that k(G) >
k(G/N)+¢c(N). I

(log, |G|/ log, log, |G|) +1
2(1+1/8)

we are done. On the other hand, suppose

o(N) >

2(1+1/B)e(N) < (log, |G|/ log; log, |G) + 1.

Then 77! < log, |G|/ log, log, |G|, and k(G) > |G|” > log, |G|, so again the

desired conclusion follows. o

THEOREM 4: If G is a Frobenius group, then

1 log, |G|

HC)> S iogy log, 161"
Proof: Let N be the kernel of G, and H the complement, with G = HN, HNN =
{1}. We use many of the known properties of Frobenius groups (see e.g., [8,
Chap. V, £ 8].

If |H| is odd then H = G/N is metacyclic. In particular, H' is abelian and
thus, by Theorem 1, ¥(G/N) > [G : N]*/2. Also the kernel N is nilpotent, so by
Lemma 4

k(G) > 1/8log; |G|/ log; log; |G|.

On the other hand, if |H| is even then N is abelian. When H is also solvable,
then H has a normal subgroup H, such that all Sylow subgroups of H, are
cyclic, and H/H, is isomorphic to a subgroup of Sym(4). Thus G/N has a
normal subgroup M/N such that G/M is isomorphic to a subgroup of Sym(4).
Since all subgroups L of Sym(4) satisfy k(L) > 5/24|L|, we have

k(G) > k(G/M) > 5/24]G : M].

3 log, |G|

(G M] > -5-log2 log, |G|

we are done, so assume that

|M]| > %!GI log, log, |G|/ log; |G|.
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Since all Sylow subgroups of H, = M/N are cyclic, H) is cyclic and M"" < N,
so d(M) < 3. By Theorem 1, k(M) > |M|'/", and using Lemma 1

KM | |MPS

MO > @2 o

But now the lower bound assumed for | M| easily yields

IMPB/T 1 log, |G|
1G] 8log, log, |G|

Finally, when |H| is even but H is not solvable, H has a normal subgroup H,
such that [H : H,] < 2 and H, & SL(2,5) x Hy, where H; has only cyclic Sylow
subgroups. We will show that k(H) > |H|'/3, i.e. K(G/N) > [G : N]'/3. Since

N is abelian, using Lemma 3(i) we then obtain

1/8log, |G|

kG) > |G > )
(@) > 16l log, log, |G

Now k(H,) = k(SL(2,5))-k(H;) > 9(9/2)'/3|H,|'/3, since k(SL(2,5)) = 9 and
H, is metabelian. But [H,| = |H,|/120 > |H|/240, and

k(H,)
[H : H,)

k(H) >

by Lemma 1. So

9 4/3 |H| 1/3 /3
HH) > 1/24H) 2 (3) (5) >,

and the proof is complete. o

Note added in proof. In a paper to appear in the Journal of the London Math-
ematical Society, L. Pyber proves that there exists an explicitly computable
constant € > 0 such that every group G of order n > 4 satisfies k(G) >
elogn/(loglogn)®. The proof relies on the classification of the finite simple
groups. His estimate for solvable groups, which does not rely on the clas-
sification of the finite simple groups, is somewhat better but not as good as

k(G) 2 logn/(loglogn).
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