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ABSTRACT 

We prove first that if G is a finite solvable group of derived length d ~_ 2, 

then k(G) ~> ]G] I/(2d-I), where k(G) is the number of conjugacy cl~sses in G. 

Next, a growth assumption on the sequence [G(i) : G(i+l)] d - l ,  where GO) is 

the  i th derived group, leads to a ]G[ I/(2d-1) lower bound for k(G), from which 

we derive a [G] c/l°g2 I°g21el lower bound,  independent  of d(G). Finally, "al- 

most  logarithmic" lower bounds are found for solvable groups with a ni lpotent  

maximal  subgroup, and for all Frobenius groups, solvable or not. 

1. Introduct ion 

In 1903 E. Landau [12] showed that the number k(G) of conjugacy classes in a 

finite group G cannot remain bounded as IGI ---, oo . Using Landau's  method, 

P. Erdhs and P. Tur~x~ [6] gave the best general lower bound presently known: 

k(G) > log 2 log 2 IG[. But there is growing evidence that this bound is far from 

best possible. For example, the author proved in [1] that given e > 0, for almost 
all integers n < x, as x ---* oo, k(G) > ]G] ~- '  for each group G of order n. The 
recent work of A. V. Ldpez and J. V. L6pez [13], [14] expands the classification 

of the finite groups with a given number k of conjugacy classes to all k _< 12, and 
shows that k(G) > log 3 [G[ when [G[ < 313. No group G has been discovered with 

k(G) < log 3 ]G[, while k(G) = [log 3 [G[] for either G = PSL(3,4)  or G = M22 (a 

Mathieu group), and 14 of the 26 sporadic simple groups satisfy k(G) < log 2 [G[. 

On the other hand we know that if G is a nilpotent group then k(G) > 

log s ]G] (see e.g. [3] or [18]). Furthermore, gov£cs and Leedham-Green [11] 
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have discovered, for each odd prime p, a group Gp of order pP with fewer than 

(log 2 [Gpl) 3 classes. We note that these p-groups Gp contain far fewer classes 

relative to their orders than do the Alternating groups An for n sufficiently large. 

Cartwright proved in [3] that if G is supersolvable then k(G) >_ 3/5 log 2 IGI, and 
has shown more recently [4] that there exists a constant a > 0 such that for 

every solvable group G we have k(G) > a(log s [GD b, where b - .003459 .... 

Sherman proved [18] that if G is nilpotent of nilpotence class c then k(G) > 
c(IG] ]/c - 1) + 1, and Cartwright [3] showed that if G is solvable of Fitting length 

f then k(G) > (log s IGI) 1/I. 
In Theorem 1 we prove that if G is a solvable group of derived length d _> 2 

then k(G) > IGla/e-1. This extends the author's result in [2] for d = 2, where 

it also shown that the exponent 1/3 is best possible. There are many interesting 

situations which give rise to small derived lengths (e.g. _< 3) while ]GI ~ co, 

assuming further knowledge of either the structure of solvable G or the prime 

factorization of IGh and these yield IGI ~ lower bounds on k(G) via Theorem 1. 

In Theorem 2 we show that certain growth assumptions on the sequence 
{[G <i) : G(i+l)]}la-] lead to a IGI 1/(sd-') lower bound on k(G), which in turn 

leads to a IGI c/l°s2 los2 IG[ lower bound independent of d(G), using a deep result 

of P. M. Neumann and M. R. Vaughan-Lee. When G is solvable and contains 

a nilpotent maximal subgroup we find in Theorem 3 that k(G) ~_ ~(log s ]G]) b, 

where b > .414 . . . .  Finally, we prove in Theorem 4 that for all Frobenius groups, 

solvable or not, 
1 log s IGI 

k(G) > 
8 logs logs IGI" 

t 

G is called a Frobenius group if G contains a proper subgroup H such that 

H f3 H 9 -- {1} for every g E G - H. Frobenius proved [8, p. 495] that  G - 

[.JgeG H# U {1} forms a proper normal subgroup N (the kernel). The studies of 

A. V. L6pez and J. V. L6pez [13], [14] show that for k _< 12 either the largest o r  

second largest solvable group containing exactly k classes is a Frobenius group. 

l~robenius groups are extremal also in the sense of Lemma 1. For a different 

proof, without the characterization of equality, see [3, Lemma 2.1]. 

LEMMA 1: If N <~ G, then 

k(N)  - 1 
k(G) > k(G/N) + 

[G: N] " 
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When N is proper, equality occurs ff  and only if  G is a P~obenius group with 
kernel N. 

Proof: Since N ~_ G, k( G) = ka( N) + ka( G - N) where ka( S) is the number of 

G-conjugacy classes in the normal subset S. Clearly kv(G - N) > k(G/N) - 1, 
since whenever gl, gz E G - N and gl, g~ are G-conjugates then Ngl and Ng2 

are G/N-conjugates. Also, if n E N then ICG(n)N I = [CG(n) : CN(n)]IN I 

that is [G: CG(n)N]I[n]NI = I[n]al, where [n]N is the N-class of n and CN(n)  = 

NGCG(n). It follows that  each G-class [n]a C_. N splits into exactly [G : CG(n)N] 
N-classes. Summing over the distinct [n]G C_ N - {1} we obtain 

k (g )  - 1 = k N ( g  - {1}) = ,U[G: CG(n)N] < 27[G: N] = [G: N](kG(g) - 1), 

SO 
k(N) - 1 

kG(N) >_ [G: N] -I- 1; 

this together with ka(G - -  N) >__ k(G/N) - 1 gives the desired inequality. It is 

well known that  if G is a Frobenius group with kernel N then equality occurs in 

the statement of Lemma 1 [5, p. 68]. Suppose equality occurs and 1 ~ N ~ G. 

From the proof we see that  [G:  Ca(n)g] = [G : N], i.e., that  Ca(n) C Y for 

each n E N - {1}. But this is a necessary and sufficient condition that  G be a 

Frobenius group with kernel N [10, p. 99]. tJ 

THEOREM 1: Suppose G is a solvable group of derived length d > 2. Then 

k(G) > IGI1/2"-a. 

Proof: More generally, we prove that  (G (i) denotes the i th  derived group) if 

IG(01 _< IGI 1-~ for some i : 1 < i < d and a : 0 < a < 1, then k(G) > IGI~/2'-1 
Since k(G) > [G : G'], the statement certainly follows when i = 1 and a > 0. 

Assume, for a proof by induction, that for some i : 1 < i < d - 1, whenever 

0 < fl_< Z and [G:  G (0] _> IGI p, then k(G) > IGI ~/~'-'. Now suppose that  

[G:  G (~÷~)] >_ IGI ~ for some ~ :  0 < ~ _< 1. Then either (a) or (b) must hold, 

where: 

(a) 
( '~ 21-1 ot 

[ c :  CC' ] >_ , 

(b) [G(0: G (~+~>] >_ iG I L "-m:r-' ) '~, 

If (a) is true, then the induction hypothesis with 
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yields k(G) > [GI ~/2'-1 = [G[ ~/2'+'-~, so the conclusion holds for i + 1. Other- 
wise (b) is true and (a) is false. From Lemma 1 and k(G (i)) > [G (/) : G (i+1)] we 

h a v e  
k ( G ( 0 )  - 1 [G(0 : G(~+~)] 

k(G) >_ k(GIG (i)) + > 
[a : G(o] [G : G~o] 

which is now > IGI c'/2'+~-I. In each case we find that [G : G (i+1)] _> IG[ ~ implies 

k(G) > [G[ al2'+t-1, and the induction is complete, m 

Remarks: P. M. Neumann and M. R. Vaughan-Lee showed (in [16]) that there 

exist positive constants a < 8 and b < 8/3 such that,  if G is any finite solvable 

group, then d(G) < a + blog 2 log 2 [G I. Our Theorem 1 shows that whenever 

solvable O has d(G) <_ log 2 log S [Cl - logs logs logs IGI then k(O) > log S IG[. 

There are many interesting situations where the derived length of solvable G is 

known to be small (e.g. < 3), assuming a little more knowledge about  G, or [G[. 

These in turn lead to ]GI ~ lower bounds for k(G), by Theorem 1. For example, 

if G is solvable of cube-free order then d(G) _< 3 (see [19]). If G has an abelian 

maximal subgroup then G is solvable and d(G) _< 3 ([17], p. 392). If G = AB 
where A and B are abelian subgroups of G then G is solvable and d(G) <_ 2 
([17], p. 384). Finally, if G is a solvable, doubly transitive permutat ion group 
then it follows from the work of Huppert  [9] that d(G) < 5. 

LEMMA 2: If G is a solvable group and N <3 G then k(G) >_ k(G/N) + d(N), 
where d( g )  is the derived length of N. In particular, k( G) >_ [G : G'] + d( G) - 1. 

Proof: The inequality in the lemma is certainly true when N is abelian. Let 

d = d(N), and N > N (1) > ... > N (d) = {1} the derived series for N. Then 
each N (/) is characteristic in N and normal in G, and N(i)/N (i+1) is abelian. 

Therefore for each i _< d - 1 we have k(G/N (i+1)) >_ k(G/N (i)) + 1. Thus 

k(G) >_ k (G/g  (d-l)) + 1 >_ k(G/N (d-2)) + 2 >_... >_ k(G/N) + d(N). 

A sequence of real numbers {ai}~ "decreases on the average" if 

a r + l _ < l ( a l + a 2 + . . . + a r )  f o r e a ~ h r : l < r < n - 1 .  

Note that  this condition is equivalent to 

r+l(al+a2+'"+a~+l)-< (al+a2+-.-+ar). 
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Clearly, non-increasing sequences are decreasing on the average, but  it is easy 

to construct others. An interesting inequality, generMizing a classical inequality 

of Chebycheff, states that if the sequences {ai}'~ and {bi}'~ both decrease on the 

average (or both increase on the average), then 

n n n 

n~'~aibi > E a i  y~bi .  
i=1 i=1 i=1 

See e.g. [15]. A proof by induction is tricky, but  not difficult. This inequality is 

used to prove the following result. 

THEOREM 2: Suppose G is a solvable group of  derived length d >__ 3, and that 
{[G(O : G(i+l)l}l a - '  decreases on the average. Then 
(a) k(G) > IGp/(2d-'), and 
(b) k(G) > IGI c/~°g2'°g2 IGI where c is a positive constant. 

Proof: In Lemma 1 replace G by G (i) and N by G (i+1). Then 

k(G (o) > [G ~o : G(~+~)] + k(G (i+x)) - 1 
[G  (i) : G ( i + I ) ]  ' 

SO 

[G (i) : G (i+')] -- 1 k(G (i+D) - 1 k(G(O) - 1 > + 
[G: GCi)] - [G : G(i)] [G: GCi+~)] 

for each i : 1 < i < d - 2. 

We may now use the latter inequality to repeatedly replace (k(O (i))-I)/[G : G (i)] 

by its lower bound. Thus, 

k(G')  - 1 [G': G"] - 1 k(G")  - 1 
k ( G ) > [ G : G ' ] +  [G:G'I > [ o : o ' ] +  [G:G'I + [G:G"I 

k ( a " )  - 1 = [G: O'] + [G': G"](I O ' l -  I G" I) + G"] > " "  >' 
IGI [G: - - 

SO 

(1) 
d-1  

1 
k(G) > [G: G'I + I-~ ~ [ G " )  : G"+I)I(IG(i)I- IG('+I)I). 

i=1 

Since {[G (/) : G(i+I)]} decreases on the average, so does {[G (0 : G (/+1)] - 1}, 

and the sequence {IG<')I-IG(,+I)I} must decrease since IG(~+I) I properly divides 
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[G(i) I. From the generalized Chebycheff inequality we have (after rewriting the 

telescoping sum) 

d-1 d-1 ) 
(') E[G(i):G(i+l)]('G(i)l-lG(i+l)')>-(dl~-li~=l[G(i):G(i+l)] i=1 (,G'[ - 1). 

Since the arithmetic-geometric inequality gives (after rewriting the telescoping 

product): 
d-1 

I ~--~[G0) : GO+l}] > [G , l , l ( d_ , )  ' 
d 1 

i=1 

we obtain from (1) and (*) that 

1 - IG'1-1 
k(G) > [G: G'] + [~_~]]  IG'I ' / ~ - ' ) .  

From the latter (or Lemma 1 or 2), part (a) of the Theorem follows when 

[G: G'] > [G[ ~l(2d-~). 

On the other hand, 

[G: G'] < [G[ 1/(2d-1) i~ [Gt[ 1/(d-1) > [G[ 2/(2d-1). 

The latter, together with the last inequality on k(G) and the arithmetic-geometric 
inequality, again yield part  (a) of the Theorem. As remarked earlier, P. M. Neu- 
mann and M. R. Vaughan-Lee showed (Theorem 10.2 in [16]) that there exist 
positive constants a < 8, b < 8/3 such that if G is any finite solvable group 
then d(G) < a + blog 2 log 2 IG]. Part  (b) of the theorem follows from the latter 

inequality and part (a). u 

From Lemma 1 it follows that if G is solvable of derived length d, and 

ZG(d-1) l > IGl(l+~)/2 

for some a : 0 < a _< 1, then k(G) _> IGI =. Inequality (1) in the proof of Theorem 

2 gives us a little more from the same lower bound on max1_<j<_d_2[G (j) : G(J+I)]. 
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COROLLARY: -Igor a solvable group G, suppose 

max [G (j) : G  (/+1)] > IGI "+")/~. 
l_<j<_d-2 

Then k(G) > [G: G'] + [G[". h~ particular, if 

max [G (i) : G (i+~)] > (IGllog2 IGI) ~/2 l<_i<d-2" 

then k(G) >_ [ G :  G'] -1- log  2 IGI. 

Proof: Whenever x > 2y  > 4 we have z - y > x / y ,  so  j < d - 2 implies 

IGu)I- IG(~+I)I >_ [G(J) : GO+')], 

d-l[G(i) and now by hypothesis at least one term in ~i=1 : G(i+~)](IG(i)l -1G(i+l)[) 
is at least IGI ~+-. The first conclusion now follows from inequality (1) in the 
proof of Theorem 2. In particular when 

log2 log2 IGI Og-- 
log2 IGI ' 

the second conclusion is obtained, t~ 

Suppose the solvable group G contains a nilpotent maximal subgroup M, and 
the Fitting subgroup F(G) ~ M. Then G = FM and hence G has Fitting length 
2. It follows from Theorem 4 of [3] that k(G) > (log 2 [G[) 1/2. The general case 
is considered in Theorem 3 below, but we first need the following Lemma. 

LEMMA 3: LetN beapropernormalsubgroupofG, andO< o~,3, a,b<_l. 
(i) ~r k(N) _> INI ~ and k(al2V) >_ [ a :  N] ~ then 

k(G) > IGI "a/(l+'+a). 

(ii) Ilk(N) > alNI ~' and k(G/N) >_ blog2[a : N] then 

ab 
k(a)  > ~ ( ~  log2 IGI - log~ logz IGI). 

IN[" - 1 [N[ "+1 
k(G) >_ k(G/N) + [G: N----~ > [G---~- > [G["M0+"+~)" 

Proof: ( i ) I f  INI _> IGI O+t~)/(l+a+#), then IN[ 1+" >_ IGI 1+"~/(1+"+3). By 
Lemma 1 
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Otherwise INI < IGI (1+~)/(1+~+a), i.e. [G : N] > IGI~/O +~+~), and by Lemma 

1, 

k(G) > k(a /N)  >_ [G: N] a > IGI ~a/(~+~+a). 
The proof of (ii) is similar, according to whether 

b 
INI ~+" > 1--~-ffalGllogs IGI, 

or b 
INI 1+~ _< - - I G l l o g s  IGI. l + a  

In the former case Lemma 1 gives 

k(N) alNl" ab 
k(V) > [G: N------~ -> IV: N------~ > ~ logs IVl. 

In the latter case Lemma 1 gives 
b 

k(G) > k(G/N) > 1---~--~a (a logs IGI- logs logs IGI). 

THEOREM 3: Let G be a solvable group with a nilpotent maxima] subgroup. 

Then 
(a) k(G) > ](log 2 [GD b, where b (> .414) satistles b -1 = 1 + log2(8/3 ). 

(b) If  Ial = 1-IPT' (P, disti=ct primes) and s = Max or, then 

2 log z IGI k(G) > 
5 s + l  

Proof.." Let M be a nilpotent maximal subgroup of G and MG the core of M. In 

order to prove (a) we will need k(G/MG) > 3/41og2[G : MGI, and for (b) we need 
k(G/'~) > 1/41og2[G : ~], where ~(G) is the Frattini subgroup of G. These two 

inequalities are derived as follows: Since G is solvable, if LIMa is a chief factor 

of G then LIMa is abelian and L _ G, but  L ;~ M. Also L' < MG < L N M 
so L N M ~_ L, M and MG < L ~ M ~_ G = LM. Thus MG = L N M 
so M/MG TM G/L -~ G/MG/L/MG, and G/MG is abelian by nilpotent. By 

Theorem 1 of [3], k(G/MG) >_ 3/41og2[G : MG]. Since MG is nilpotent and 

normal in G, MG <_ F(G) ,  the Fitting subgroup of G. Also ~(G) < MG, MG/~ 
is abelian and G/q~/Ma/'I~ ~ G/MG. In Lemma 3(ii) replace G by G/~, g by 

MG/~ and set a = a = 1, b = 3/4. Then 

k(G/~) > ~(logs[a : ¢] - logs logs[G: ¢]). 

The latter is > 1/41og2[G : q~l when [G : q'] > 21°, so k(G/e~) > 1/41ogs[G : q,]. 
But all groups of order t < 21° have > 1/41og 2 t conjugacy classes [13], so in all 

cases k(Gl~) > ¼ logs[G: '~l. 
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Proof of (a): For 0 <_ j <_ d(Ma) define Gj -- G/M(~ ) and the abelian Nj = 

M(~-I)/M(~ ) for j > 1. Then Gj/N i ~ G,/-1 and we prove by induction that  

k(Gj) > ,aJ¢3-~1+1 log 2 [G/I ' j _> 0. For j = 0 we have 

k(Go) = k(G/MG) > ~ logs[G : MG], 

as proved in the paragraph above. Thus k(Go) > 43-1og2 IGol. When j _> 1 ,N i 

is abelian and we apply Lemma 3(ii) to k(Gj), with N replaced by N 1 and 

a = a = 1. For j = 1 set b = 3/4, and for j >_ 2 set b = (3/8)J. Then 

k(G1) > 3/8(log2 IGI I - l°g2 l°g2 Ia~ 1), 

and for j >_ 2 

k(a~) > ( 8 /  

¢'1 1 
~(1og2 IG~I - log2 logs IG~ I). 

Since we may assume that IGll >_ 2 7 (otherwise (3/8)2 log2 IGll < 1 _< k(Gl)), 
we know that log 2 IG11 > 8/5 log 2 log 2 IG~I so 

logs IG~I - logs logs IG, I > 3/8 log s IG1 I 

and the case j = 1 follows. For j E 2 we may assume that IGjl E 2 in, in which 

case log s Iajl  >_ 41og2 log2 IGjl and 

3 j I ¼log s t3~j+llog 2 IGjl" k(a~) > (i)  (~)( IGil)-- ,s ,  

In particular, when j = d(Mv) we find that k(G) > (3/8) d(Ma)+~ log s ICt. 
Set b -1 = 1 +1og2(8/3 ). As usual, we have 2 d(Mc)-I _< c, where c is the nilpo- 

tence class of the nilpotent group MG. And now we obtain, using Lemma 6.1(i) of 

[3], that  k(G) > c >_ 2 d(Ma)-~. If we assume that d(Ma) >_ blog 2 log s Ial, then 

k(a)  > 1/2(log2 Ial) b as desired. On the other hand, suppose that  d(Ma) <_ 
blog2 logs IGI. From the definition of b we have 

b log2 log2 Ial = bl°g8/3 l°g2 Ial = (1 -b) logs /a  log 2 Ial. 
logsD 2 

The inequality in (a) now follows in this case also from 

k(G) > (3/S) d(Ma)+l log 2 IGI. 

Proof of (b): Here we actually prove that 

(,) k(a) > 
2(8 + 1) 

1 
log 2 IGI - ~ log2 log 2 IGI. 
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Since always k(G) > log s log 2 [G[ [6], (b) is immediate if 

2 log s [G[ 
log s log s [G[ _> 

5 s + l  

On the other hand (b) follows from (*) when 

2 logs [G[ 
log 2 log s [G[ < 

5 s + l  

To prove (*), note that when s _< 2 we have each Sylow subgroup of G abelian, 
as well as M an abelian maximal subgroup of G. As mentioned in the Remarks, 
either leads to d(G) _< 3 and hence k(G) > [G[ ~/7, by Theorem 1. Since s _> 1 

we need only show that [G[ 1/7 > ] log s [G[; the details are left to the reader. 

So assume that s >_ 3. By a result of Hill and Parker [7] the nilpotence class 
cl(¢(G)) < ½(s - 1), and by Sherman's theorem [18] k(~) > [~[s/(,-]). Recall 

now that k(G/'~) > ¼ log2[G : ~], proved in the first paragraph. In Lemma 3(ii) 
replace N by ~b, a by 2/(s - 1), and set a : 1 and b = 1/4. We obtain the 

inequality 
1 s - 1  

k(G) > ~.(s + 1 - - - - ~  (l°g~ Ivl - ( - -2  - ) l ° g s  l°gs Ivl)' 

and from this (*) follows, v 

LEMMA 4: Let N be a nilpotent normal subgroup of the solvable group G, with 
k(G/N) > [G: N] ~. Then 

k(G) > + log2 IGI/logs logs IGI. 

Proo~ Let {N (1) : j _> 0} denote the derived series of N, N (°) = N, and 
Gj := GIN 0). If Nj := N(J-1)/N (1) are the abelian factor groups of {N(/)}, 
then Gj-1 ~- Gj/Nj, for j > 1. Hence k(Go) = k(G/N) > [G : N] ~ = [GoI~, 
k(GI/N~) = k(Go) >_ [G1 : N~] ~, and k(N~) = [N~[. By Lemma 3(i), k(G~) > 
[Gll ~', where fll = ~/(2 + fl). Now k(G2/N~) >_ [G2 : N2] ~' and k(N2) = IN21, 
so k( G2 ) >_ IGs [ ~" where f12 = fll/(2 + ~1) = fl / ( 4 + 3fl). Continuing in this way 

we see that k(Gi) >_ [Gi[ ~' where 

1 
f l i = ( l + l / f l ) 2  i - l '  for e a c h i : l < i < d ( g ) .  

In particular, when i = d(N), Gi -~ G, and k(G) >_ [G['q where 

7 - I  = (1 + 1/~)2 deN) - 1. 
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Since the nilpotence class c = cl(N) always satisfies d(N) <_ log 2 cl(N) + 1 we 

have 7 -1 _< 2(1 + 1/~)c(N) - 1. By [3, Lemma 6.10) ] we know that k(G) >_ 
k(a/N) + c(N). If 

(log2 tGI/log2 log2 IGI)+ 1 c(N) > 
2(1 + llfl) 

we are done. On the other hand, suppose 

2(1 + 1/~)c(g) < (log2 IGI/log2 log 2 IGI) + 1. 

Then 7 -1 _< log 2 [G[/log21og 2 [G[, and k(G) >_ [GI "t >_ log 2 IGi, so again the 

desired conclusion follows. D 

THEOREM 4: If G is a Frobenius group, then 

k(G) > 
1 log2lG l 

8 log 2 log 2 [G[" 

Proof: Let N be the kernel of G, and H the complement, with G = HN, HNN = 
{1}. We use many of the known properties of Frobenius groups (see e.g., [8, 

Chap. V, ~ 8]. 

If IHI is odd then H ~- G/N is metacyclic. In particular, H '  is abelian and 

thus, by Theorem 1, k(G/g) > [G : g] 1/s. Also the kernel N is nilpotent, so by 

Lemma 4 

k(G) > 1/8 log 2 IGI/log2 Iog2 Ial. 

On the other hand, if [H,[ is even then N is abelian. When H is also solvable, 

then H has a normal subgroup Ho such that all Sylow subgroups of Ho are 
cyclic, and H/Ho is isomorphic to a subgroup of Sym(4). Thus G/N has a 
normal subgroup M/N such that G/M is isomorphic to a subgroup of Sym(4). 

Since all subgroups L of Sym(4) satisfy k(L) > 5/24[L[, we have 

k(G) > k(G/M) >_ 5/24[G : M]. 

If 

[ G : ~  > 

we are done, so assume that 

3 1og2 IGI 
5 log2 log2 IGI 

IMI > ~IGI log2 log2 IGI/Xog= IGI. 



254 E.A.  BERTRAM Isr. J. Math. 

Since all Sylow subgroups of Ho ~- M/N are cyclic, H" is cyclic and M" _< N, 
so d(M) < 3. By Theorem 1, k(M) > IMI 1/7, and using Lemma 1 

k(M) IMISP 
k(G) > [G: M------~ -> IG--T 

But now the lower bound assumed for [MI easily yields 

IMI s/7 1 log~lGI - - >  
IGI 8 log 2 log 2 IGI" 

Finally, when [HI is even but H is not solvable, H has a normal subgroup Ho 
such that [H : Ho] <_ 2 and Ho ~ SL(2, 5) ×//1,  where/-/1 has only cyclic Sylow 
subgroups. We will show that k(H) > IHI1/s, i.e. k(G/N) > [G: N] 1/3. Since 
N is abelian, using Lemma 3(i) we then obtain 

1/s log~ IGI k(G) > IGI ~/7 > 
log~ log2 IGI" 

Now k(Ho) = k(SL(2, 5)). k(H1) >_ 9(9/2) 1/3 IH111/3, since k(SL(2, 5)) = 9 and 

H1 is metabelian. But IH1] = IHol/120 >_ ]H]/240, and 

k(Ho) 
k(H) > [H: go-------I] 

by Lemma 1. So 

k(H) > 1/2k(Ho) >_ \ 2 4 0 ]  > ]HI'~3' 

and the proof is complete, v 

No~e added in proof. In a paper to appear in the Journal of the London Math- 
ematical Society, L. Pyber proves that there exists an explicitly computable 

constant e > 0 such that every group G of order n > 4 satisfies k(G) > 
log n/(loglog n) s. The proof relies on the classification of the finite simple 

groups. His estimate for solvable groups, which does not rely on the clas- 
sification of the finite simple groups, is somewhat better but not as good as 

k(G) > log n/(log log n). 
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